

 Navigation

 	
 index

 	
 next |

 	unMessage 0.1.0 documentation

unMessage

What is it?

	Overview
	Features

	Installation
	Updating

	Usage

	Persistence

	Graphical User Interface (GUI)
	Sending Requests

	Receiving Requests

	Chatting
	Notifying Presence

	Verifying

	Authenticating

	Authentication Levels

	Relaunching unMessage

	Command-line Interface (CLI)
	Sending Requests

	Receiving Requests

	Chatting
	Notifying Presence

	Verifying

	Authenticating

	Authentication Levels

	Relaunching unMessage

	unMessage Protocol
	Stage 1: Request sent

	Stage 2: Request accepted

	Stage 3: Conversation established

	Identifying conversations

Other

	Changelog
	unMessage 0.1.0, released 2017-01-22

	Feedback

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	unMessage 0.1.0 documentation

Overview

unMessage is a peer-to-peer instant messaging application designed
to enhance privacy and anonymity.

Warning

unMessage is alpha software. While every effort has been made
to make sure unMessage operates in a secure and bug-free fashion,
the code has not been audited. Please do not use unMessage for
any activity that your life depends upon.

Features

	Transport makes use of Twisted [https://twistedmatrix.com], Tor Onion Services [https://www.torproject.org/docs/hidden-services.html] and
txtorcon [https://github.com/meejah/txtorcon]

	Encryption is performed using the Double Ratchet Algorithm [https://whispersystems.org/docs/specifications/doubleratchet]
implemented in pyaxo [https://github.com/anemonelabs/pyaxo] (using PyNaCl [https://github.com/pyca/pynacl])

	Authentication makes use of the Socialist Millionaire Protocol [https://en.wikipedia.org/wiki/Socialist_millionaire]
implemented in Cryptully [https://github.com/shanet/Cryptully]

	Transport metadata is minimized by Tor and application metadata by
the unMessage Protocol

	User interfaces are created with Tkinter [https://docs.python.org/2/library/tkinter.html] (graphical) and
curses [https://docs.python.org/2/library/curses.html] (command-line)

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	unMessage 0.1.0 documentation

Installation

Make sure that you have the following:

If using Debian/Ubuntu
$ sudo apt-get install build-essential gcc libffi-dev python-dev tor tkinter

If using Fedora
$ sudo yum install gcc libffi-devel python-devel redhat-rpm-config tor tkinter

If you use pip [https://pypi.python.org/pypi/pip] and setuptools [https://pypi.python.org/pypi/setuptools] (probably installed automatically
with pip), you can easily install unMessage with:

$ sudo pip install unmessage

Launch unMessage with any of the commands:

$ unmessage-gui # graphical user interface (GUI)
$ unmessage-cli # command-line interface (CLI)
$ unmessage # last interface used

Updating

If you installed unMessage with pip, you can also use it for
updates:

$ sudo pip install --upgrade unmessage

Usage

unMessage offers usage instructions for both interfaces:
Graphical User Interface (GUI) and Command-line Interface (CLI).

Persistence

All files used by unMessage are saved in ~/.config/unMessage/

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	unMessage 0.1.0 documentation

Graphical User Interface (GUI)

Launch unMessage’s GUI with:

$ unmessage-gui

You are taken to the Start Peer tab and you are required to pick any
name you wish to use and press Start:

[image: ../_images/start-gui.png]
Start Peer window

Tor is launched and if this is the first time you use that name,
your Onion Service and Double Ratchet keys are created and you
are ready to receive and send requests to initialize conversations.
unMessage displays this bootstrap process:

[image: ../_images/bootstrap-gui.png]
Bootstrap window

The Copy buttons at the top bar can be used to copy information
the other peers need to send you requests. You must share both your
identity address and key:

charlie@jt6zabesvrhxvhee.onion:50001 v4kU6s+NuJW/Znbjz0AxoI9Gvl1XDS5eiOTm6cE38E4=

Sending Requests

Press the New chat button at the top bar to open the Request
window. Provide the identity address and key of the peer you
wish to contact:

[image: ../_images/req-send-gui.png]
Outbound request window

An identity address is provided in the format
<name>@<onion address>, where the <name> is only a local
identifier of the peer and you can pick any name you wish to call
them.

Receiving Requests

Inbound requests are notified in a new window with the information of
the peer who sent the request:

[image: ../_images/req-accept-gui.png]
Inbound request window

As mentioned previously, peer names are local and when accepting a
request you can pick another one to call them instead of using the one
they sent.

Chatting

unMessage creates tabs for each peer you have a conversation with.
Within each tab, besides composing messages and sending (clicking
Send or pressing the Enter key) there are some actions
available.

[image: ../_images/msg-gui.png]
Chat tab

Notifying Presence

If you wish to notify the peer whenever you go online or offline,
check Send Presence and unMessage will start to send them
notifications of these events.

Verifying

If you have some secure communication channel established with the
other peer, ask them for their unMessage public identity key. Click
Verify and enter the key:

[image: ../_images/verify-gui.png]
Verification window

If the key matches, the peer will be verified and now you have
established a verified and secure communication channel:

[image: ../_images/level-verify-gui.png]
Verified conversation

Authenticating

The authentication of a conversation works by prompting both peers for
a secret (which was exchanged through some other secure channel) and
if the secrets provided match, they are sure they are chatting with
the right person. Click Authenticate and provide the secret:

[image: ../_images/auth-gui.png]
Authentication window

An authentication session is created when the secrets are exchanged
and is valid until one of the peers disconnect. When it happens, the
conversation is not authenticated anymore and a new session must be
initialized when the peers reconnect.

[image: ../_images/level-auth-gui.png]
Authenticated conversation

Assuming that one of the peers might be an attacker, this process is
done with the Socialist Millionaire Protocol [https://en.wikipedia.org/wiki/Socialist_millionaire] by comparing the
secrets without actually disclosing them.

Authentication Levels

As noticed, unMessage conversations have three authentication levels:

	Unverified Conversation

	Verified Conversation

	Athenticated Conversation

When the conversation is established, its level is
Unverified Conversation because unMessage does not know if you
are sure that the peer’s identity key is actually theirs.

If you follow the Verifying section, the level changes
to Verified Conversation and it persists for as long the
conversation exists.

If you follow the Authenticating section, the
level changes to Athenticated Conversation and it persists for as
long the session exists. Once the session is over, the level
drops to the identity key’s verification level:
Unverified/Verified.

Important

The Authenticated level is stronger than the Verified
level because the former is a short term verification that lasts
only until the peers disconnect, while the latter is long term
that lasts until the conversation is deleted (manually, by the
user). That means that with a short term verification you are able
to authenticate the peer at that exact time, while a long term
verification means that you authenticated the peer in the past,
but is not aware of a compromise in the future.

This feature aims to increase unMessage’s security by identifying
an attack that is not covered by the scope of the
Double Ratchet Algorithm: compromised keys.

Relaunching unMessage

unMessage remembers the last User Interface and Peer that you used. If
you wish to use a shortcut, you may call:

unmessage

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	unMessage 0.1.0 documentation

Command-line Interface (CLI)

To launch unMessage’s CLI, pick any name you wish to use and call
it with:

$ unmessage-cli -name <name>

Tor is launched and if this is the first time you use that name,
your Onion Service and Double Ratchet keys are created and you
are ready to receive and send requests to initialize conversations.
unMessage displays this bootstrap process:

[image: ../_images/bootstrap-cli.png]
Bootstrap lines

After unMessage is launched, you can call /help to display all the
commands the CLI responds to:

[image: ../_images/help-cli.png]
/help command

The /peer, /onion and /key commands can be used to copy
information the other peers need to send you requests. You must share
both your identity address and key:

bob@a7riwene46w3vqhp.onion RefK+9vx3GZpclb/On95iJ1QnxqkUeq/JBYqK5gHFwo=

Sending Requests

Use the /req-send command to send a request, providing the
identity address and key of the peer you wish to contact:

[image: ../_images/req-send-cli.png]
/req-send command

An identity address is provided in the format
<name>@<onion address>, where the <name> is only a local
identifier of the peer and you can pick any name you wish to call
them.

Receiving Requests

Inbound requests are notified, with the information of the peer who
sent the request:

[image: ../_images/req-accept-cli.png]
/req-accept command

As mentioned previously, peer names are local and when accepting a
request you can pick another one to call them instead of using the one
they sent.

Chatting

unMessage diplays each peer you have a conversation with by calling
the /convs command.

[image: ../_images/convs-cli.png]
/convs command

To send a message to a peer, use the /msg command:

[image: ../_images/msg-cli.png]
/msg command

Notifying Presence

If you wish to notify the peer whenever you go online or offline,
use the /pres-on command and unMessage will start to send them
notifications of these events:

[image: ../_images/pres-on-cli.png]
/pres-on command

To disable, use the /pres-off command.

Verifying

If you have some secure communication channel established with the
other peer, ask them for their unMessage public identity key. Use the
/verify command and enter the key:

[image: ../_images/verify-cli.png]
/verify command

If the key matches, the peer will be verified and now you have
established a verified and secure communication channel.

Authenticating

The authentication of a conversation works by prompting both peers for
a secret (which was exchanged through some other secure channel) and
if the secrets provided match, they are sure they are chatting with
the right person. Call the /auth command and provide the secret:

[image: ../_images/auth-cli.png]
/auth command

An authentication session is created when the secrets are exchanged
and is valid until one of the peers disconnect. When it happens, the
conversation is not authenticated anymore and a new session must be
initialized when the peers reconnect.

Assuming that one of the peers might be an attacker, this process is
done with the Socialist Millionaire Protocol [https://en.wikipedia.org/wiki/Socialist_millionaire] by comparing the
secrets without actually disclosing them.

Authentication Levels

As noticed, the names of the peers are colored based on the
conversation authentication levels:

	Unverified Conversation (red)

	Verified Conversation (green)

	Athenticated Conversation (cyan)

When the conversation is established, its level is
Unverified Conversation because unMessage does not know if you
are sure that the peer’s identity key is actually theirs.

If you follow the Verifying section, the level changes
to Verified Conversation and it persists for as long the
conversation exists.

If you follow the Authenticating section, the
level changes to Athenticated Conversation and it persists for as
long the session exists. Once the session is over, the level
drops to the identity key’s verification level:
Unverified/Verified.

Important

The Authenticated level is stronger than the Verified
level because the former is a short term verification that lasts
only until the peers disconnect, while the latter is long term
that lasts until the conversation is deleted (manually, by the
user). That means that with a short term verification you are able
to authenticate the peer at that exact time, while a long term
verification means that you authenticated the peer in the past,
but is not aware of a compromise in the future.

This feature aims to increase unMessage’s security by identifying
an attack that is not covered by the scope of the
Double Ratchet Algorithm: compromised keys.

Relaunching unMessage

unMessage remembers the last User Interface and Peer that you used. If
you wish to use a shortcut, you may call:

unmessage

Note

unMessage’s CLI is inspired by xmpp-client [https://github.com/agl/xmpp-client].

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	unMessage 0.1.0 documentation

unMessage Protocol

The unMessage protocol is based on the Double Ratchet Algorithm [https://whispersystems.org/docs/specifications/doubleratchet] to
establish conversations and exchange messages privately and
anonymously.

Note

unMessage uses Tor Onion Services [https://www.torproject.org/docs/hidden-services.html] to anonymously connect peers
as we believe that it is the best transport for this kind of
application, but other approaches such as posting the packets to a
public mailing list should also work (as long as the packets are
anonymously posted).

In the Double Ratchet Algorithm, a secret key must be agreed on
to derive all the other keys involved in the conversation. The
secret key used by unMessage is generated with the
Triple Diffie-Hellman Key Agreement [https://whispersystems.org/blog/simplifying-otr-deniability], using one party’s
public identity and handshake keys, and another’s
private identity and handshake keys.

Each party must have its mode assigned to as either Alice or
Bob. The one who starts the initialization is Bob and can
send messages right after the secret key is generated. As part of
the initialization, Bob must send his public ratchet key to
Alice so that she is able to start the
Diffie-Hellman ratcheting [https://whispersystems.org/docs/specifications/doubleratchet/#diffie-hellman-ratchet] and also send messages immediately.

unMessage conversations have the following stages:

	Request sent

	Request accepted

	Conversation established

In order to send requests, both parties must launch unMessage to
generate their Onion Service and Double Ratchet keypairs.
unMessage is a serverless application, so a peer who wishes to
receive requests must send/publish their Onion Service address and
Double Ratchet public identity key through some other communication
channel.

unMessage assigns Bob to the one who sends a request and Alice
to the one who receives it.

Important

In the following sections, the shared request key and
conversation ID are described as the direct input of hash and
encryption functions for simplicity. In fact, these keys are input
of a Key Derivation Function (KDF) along with its respective
salt, and the output keys of the KDF that are actually used
by such functions.

Stage 1: Request sent

A request keypair is generated by Bob’s unMessage to derive a
Diffie-Hellman shared request key using the
private request key and Alice’s public identity key.
The shared request key, is used to encrypt the following
information needed by Alice to initialize a conversation with
Bob:

	Bob’s identity address

	Bob’s identity public key

	Bob’s handshake public key

	Bob’s ratchet public key

This set composes the handshake packet, which after encrypted is
used to compose the request packet:

	IV

	hash(IV + Alice’s public identity key + shared request key)

	keyed_hash(shared request key, encrypted handshake packet)

	public request key

	encrypted handshake packet

The packet is then sent to Alice’s Onion Address and Stage 1
is completed.

Important

The handshake packet should be signed by the Onion Service
and Double Ratchet keys so that a peer cannot advertise keys
they do not own. This will be implemented in a future version of
unMessage.

Stage 2: Request accepted

After receiving the request packet, Alice’s unMessage derives
the shared request key using Alice’s private identity key and
the public request key. The shared request key is hashed with
the IV and the handshake packet to make sure that is indeed an
unMessage request packet and the handshake packet can be
decrypted. Alice is notified that the request was received from
Bob and accepts it to initialize the Double Ratchet
conversation.

Bob’s public identity and handshake keys sent in the
handshake packet are used to generate the Double Ratchet
secret key with
Alice’s private identity and handshake keys (the former was
generated when unMessage was launched by the first time and the latter
when the request was accepted, to be used for this specific
conversation). The Double Ratchet conversation is finally
initialized using the secret key and Bob’s public ratchet key
(also sent in the handshake packet). At this point, Stage 2
is completed and Alice can start sending encrypted messages.
However, as Bob does not have Alice’s public handshake key, it
is encrypted (using the shared request key) and sent along with
the unMessage reply packet:

	IV

	hash(IV + Bob’s public identity key + shared request key)

	keyed_hash(shared request key, encrypted handshake key + encrypted payload)

	Alice’s encrypted public handshake key

	encrypted payload

Stage 3: Conversation established

When messages from Alice are received, Bob’s unMessage hashes
the shared request key with the IV and
Alice’s encrypted public handshake key concatenated with the
encrypted payload to make sure that is indeed an unMessage
packet from Alice, and her public handshake key can be
decrypted. Bob now can also generate the secret key with his
private identity and handshake keys, and
Alice’s public identity and handshake keys. With his part of
the conversation initialized, he can start sending unMessage
regular packets:

	IV

	hash(IV + Alice’s public identity key + conversation ID)

	keyed_hash(conversation ID, encrypted payload)

	encrypted payload

Stage 3 is completed when Alice receives a regular packet
from Bob, which means that he was able to initialize the
conversation with her public handshake key and there is no need
to send reply packets anymore, so her unMessage also starts
sending regular packets.

Identifying conversations

All of the identifying information of an unMessage packet is encrypted
so that an attacker who intercepts it cannot tell who are the receiver
and sender.

When a packet is received, unMessage assumes it is a
regular packet and attempts to use all of the peer’s
conversation IDs to derive the IV hash. If the hash matches
the packet’s IV hash, unMessage identifies the sender and is able
to decrypt the payload (after verifying its integrity). If the
IV hash does not match, unMessage assumes the packet is a
request packet and derives a shared request key using the
public request key from the packet and the peer’s
public identity key. unMessage attempts to use the
shared request key and the IV to derive a hash that matches
the packet’s IV hash. If it matches, unMessage checks the
integrity of the rest of the packet and processes the request as
described in Stage 2.

When unMessage fails to identify or check the integrity of packets,
they are ignored.

Note

The IV hash also uses the receiver’s public identity key as
part of the hash so that, for example, Alice can tell the
difference between messages she sent to Bob and messages she
received from Bob.

The IV hash is another implementation of an hSub [http://is-not-my.name/hsub.html].

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	unMessage 0.1.0 documentation

Changelog

unMessage 0.1.0, released 2017-01-22

	Initial commit

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	unMessage 0.1.0 documentation

Feedback

Please join us on #unMessage:anemone.me or #anemone:anemone.me
with Matrix [https://matrix.org], #anemone at OFTC [https://oftc.net], or use the
GitHub issue tracker [https://github.com/AnemoneLabs/unmessage] to leave suggestions, bug reports, complaints
or anything you feel will contribute to this application.

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	unMessage 0.1.0 documentation

Index

 Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/ajax-loader.gif

_images/auth-gui.png
Provide the shared secret:

e
oK cancel

_static/down.png

_images/req-send-gui.png
Whom would you like

to chat with?
Identity Address
dory@tgpknnbha3ebyrp.onion:50000
Identity Key

|42efAITXHTWFs260YEXPG29PUrOmEVQOgNSsm1gQ2TM=

Send Request

_images/msg-gui.png

_static/up.png

_images/req-send-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

> /req-send charlie@jt6zabesvrhxvhee.onion:50001 v4kU6s+NuJW/ZnbjZz8AxoI9Gv11XDS5ei0Tm6CE3BEA=
* Request sent: charlie@jt6zabesvrhxvhee.onion:50001 has received your request

>0

_static/comment-close.png

_images/level-verify-gui.png

_static/comment.png

_images/start-gui.png
Start Peer

How will peers find you?
Name
charlie
Local Server Port (Optional)

Tor Port (Optional)

Tor Control Port (Optional)

Start

_static/plus.png

_images/verify-gui.png
Provide the contact's public key:
129PUrOMEVQOgNSSM1gQ2TM=

[] cm

_images/bootstrap-gui.png
New Chat Copy Identity Copy Key Copy Peer Copy Onion Quit

Bootstrap |

Starting peer
Configuring local server

Running local server

Configuring Tor

(Configuring Tor process

(Configuring Onion Service

Running reactor

85%: Finishing handshake with first hop
9%: Establishing a Tor circuit

_static/down-pressed.png

_images/auth-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

* Authentication started: charlie wishes to authenticate - advance using "/auth charlie <secr|
et>"

> /auth charlie axolotl

* Authentication successful: Your conversation with charlie is authenticated!

> 1

_images/req-accept-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

* Request received: charlie has sent you a request - accept using "/req-accept charlie@jt6zabe
svrhxvhee.onion:50001 [<new_peer name>]"
> /req-accept charlie@jt6zabesvrhxvhee.onion:50001

* Conversation established: You can now chat with charlie using "/msg charlie <message>"

>0

search.html

 Navigation

 		
 index

 		unMessage 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, Anemone Labs.
 Created using Sphinx 1.3.5.

_images/req-accept-gui.png
Chat request received!
Do you know this peer?

Identity Address

Identity Key

New name (Optional)

Accept Request

_images/msg-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

> /msg charlie Hi!
charlie< Hi!

charlie< []

_images/convs-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

* Conversations:
charlie@jt6zabesvrhxvhee.onion:50001 v4kU6s+NuJW/Znbjz0AxoI9Gv11XDS5ei0Tm6CcE38E4=

_images/pres-on-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

> /pres-on charlie
* You will start sending your presence to charlie

>0

_images/verify-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

charlie< /verify charlie v4kU6s+NuJW/Znbjz0AxoI9Gv11XDS5ei0Tm6cE38E4=
* charlie's key has been verified.

charlie< []

_images/bootstrap-cli.png
ok kK K X K % %

unMessage

Starting peer
Configuring local server

Running local server

Configuring Tor

Configuring Tor process

Configuring Onion Service

Running reactor

85%: Finishing handshake with first hop
90%: Establishing a Tor circuit

_static/minus.png

_static/up-pressed.png

_images/level-auth-gui.png
dory |

charlie: Hello

Authenticated Conversation
”dﬂrw

_images/help-cli.png
* unMessage - bob@jt6zabesvrhxvhee.onion:50000 v4kU6s+NuJW/Znbjz0AxoI9Gv11XDS5ei0Tm6CcE38E4=

> /help
/auth

/convs
/delete

/help
/identity
/key
/msg

/onion
/peer
/pres-off
/pres-on

/quit
/req-accept

/req-send
/regs-in

/regs-out
/verify

authenticate a conversation with a shared secret
args: <peer name> <secret>
display existing conversations
delete conversation with a peer
args: <peer name>
display commands that unMessage responds to
display your identity in the format <peer name>@<onion servers:<port>
display your identity key
send message to a peer you maintain a conversation
args: <peer name> <message>
display your onion server
display your peer address and key
disable sending your presence to a peer at startup
args: <peer name>
enable sending your presence to a peer at startup
args: <peer name>
quit unMessage
accept a conversation request
args: <peer name>@<onion server>:<port> [<new_peer name>]
send a conversation request
args: <peer name>@<onion server>[:<port>] <identity key>
display inbound requests
display outbound requests
verify a peer's identity key
args: <peer name> <identity key>

_static/comment-bright.png

